S to Co coordination in $\mathrm{Co}_{9} \mathrm{~S}_{8}$ is that of the $\mathrm{Rh}(m)$ with the $S(f), S(i)$ and $S(j)$ atoms. The average distance for these is $2 \cdot 33 \AA$ (Geller, 1962b) compared with the average tetrahedral Co-S distance, $2 \cdot 19 \AA$. Moreover, the relatively longer $\mathrm{Rh}(m)-\mathrm{Rh}(m)$ than $\mathrm{Co}(f)-\mathrm{Co}(f)$ distances (Table 4) would imply a relative shortening of $\mathrm{Rh}(m)-\mathrm{S}$ distances. Thus we are able to conclude that the 4 -coordination distances are relatively as one would have predicted.

It is possible that the more complex bonding and packing in the $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ results in the shortening of the bonds of the single Rh atom in the unit cell having octahedral coordination. By studying the systems in which Co replaces Rh in $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ and that in which Rh replaces Co in $\mathrm{Cog}_{9} \mathrm{~S}_{8}$, we hope to gain some further insight into the bonding and atom sizes as well as effects on the superconductive properties of $\mathrm{Rh}_{17} \mathrm{~S}_{15}$.

References

Alsén, N. (1925). Geol. Fören. Förhandl. 47, 54.
Bond, W. L. (1951). Rev. Sci. Instrum. 22, 344.
Bond, W. L. (1959). Acta Cryst. 12, 375.
Busing, W. R. \& Levy, H. (1959). ORNL Central Files Memorandum 59-4-37, April.
Dauben, C. H. \& Templeton, 1. H. (1955). Acta Cryst. 8, 841.
Dawson, B. (1960). Acta Cryst. 13, 403.
(Geller, S. (1962a). Acta Cryst. 15, 713.
(Geller, S. (1962b). Acta Cryst. 15, 1198.
Juza, R., Hülsman, O., Meisel, K. \& Biltz, W. (1935). Z. anorg. Chem. 225, 369.

Kerr, P. F. (1945). Amer. Min. 30, 483.
Lindquist, M., Lundquist, D. \& Westgren, A. (1936). Svensk Kem. Tidsk. 48, 156.
Thylor, A. \& Floyd, R. W. (1950). Acta Cryst. 3, 285.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

Thomassen, L. (1929). Z. Phys. Chem. (B), 4, 27 7.

The Crystal Structure of the Superconductor $\mathbf{R h}_{17} \mathbf{S}_{\mathbf{1 5}}$

By S. Geller
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey, U.S.A.

(Received 1 March 1962)

Crystals of $\mathrm{Rh}_{17} \mathrm{~S}_{15}$, isostructural with those of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$, belong to one of three space groups $O_{h}^{-1} P m 3 m, T_{d}^{1}-P^{\prime} \overline{4} 3 m$ or $O^{2}-P^{\prime} 432$, have a lattice constant of $9 \cdot 911 \pm 0 \cdot 001 \AA$, and two formula units per unit cell. The structure of $R h_{17} \mathrm{~S}_{15}$ has been refined in Pm3m from selected single-crystal X-ray data. It is shown that there are relatively short $\mathrm{Kh}-\mathrm{Rh}$ contacts in $\mathrm{Kh}_{17} \mathrm{~S}_{15}$.

Introduction

To date, only $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ and $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ are known to crystallize with the structure to be described in this paper. A detailed account of the structural study of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ has already been given (Geller, 1962); it was mentioned that X-ray data from both $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ and $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ were useful in the solution of the structural problem. The main purpose of the present paper is to report on the structural details of $R h_{17} \mathrm{~S}_{15}$ and to point out how they differ from those of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$.

The rhodium-sulfur system was first investigated by Juza, Hulsmann, Meisel \& Biltz (1935). They found a compound that they designated $\mathrm{Rh}_{9} \mathrm{~S}_{8}$, which appeared from X-ray powder diffraction data to have primitive cubic symmetry. The compound was found to be superconducting by Matthias, Corenzwit \& Miller (1954). Recently, Kjekshus (1960) carried out X -ray studies over a temperature range on compounds alleged to be $\mathrm{Rh}_{9} \mathrm{~S}_{8}$ and $\mathrm{Pd}_{9} \mathrm{Se}_{8}$. The structural study has conclusively shown, however, that the correct formulae of the compounds are $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ and $\mathrm{Pd}_{17} \mathrm{Se}_{15}$, as shown in the paper on the latter compound.

Experimental

The lattice constant obtained from a powder photograph (taken with a 114.6 mm . diameter Norelco Straumanis camera and using $\mathrm{Cu} K$ radiation) of a specimen with an originally intended composition $R h_{9} S_{8}$ is $9.911 \pm 0.001 \AA$. This value probably represents the lattice constant of $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ well within experimental error. A compound $\mathrm{Rh}_{9} \mathrm{~S}_{8}$ would contain 78.31% Rh by weight while $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ contains 78.44% Rh by weight; the difference is small. Furthermore a specimen made up with intended composition $\mathrm{Rh}_{8} \mathrm{~S}_{7}$ ($78.58 \% \mathrm{Rh}$) contained elementary rhodium as shown by an X-ray photograph. Excess sulfur would be difficult to see in the ' $\mathrm{Rh}_{9} \mathrm{~S}_{8}$.' The phase appears to be fairly sharply defined in the Rh-S system, but even if there were some solution of sulfur in the $\mathrm{Rh}_{17} \mathrm{~S}_{15}$, there would probably not be a significant difference in lattice constant between ' $\mathrm{Rh}_{9} \mathrm{~S}_{8}$ ' and $\mathrm{Rh}_{17} \mathrm{~S}_{15}$.

With two $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ in the unit cell, the X-ray density $7.60 \mathrm{~g} . \mathrm{cm} .^{-3}$ is in good agreement with the value $7.68 \mathrm{~g} . \mathrm{cm} .^{-3}$ obtained pyonometrically on an ${ }^{\prime} \mathrm{Rh}_{9} \mathrm{~S}_{8}{ }^{\prime}$ specimen.

An essentially* single crystal of irregular shape and less than 0.2 mm . each dimension, was photographed with a Buerger precession camera with the [100] direction as precession axis. Weissenberg photographs were also taken about both the [100] and [110] directions as rotation axes. Mo $K x$ radiation was used throughout.

The diffraction symmetry was $m 3 m$. There were no systematic absences; thus the probable space groups are $O_{h}^{1}-P m 3 m, T_{d}^{1}-P \overline{4} 3 m$ and $O_{1}-P 432$.

The $h k 0$ and $h k l$ intensity data used in the structure refinement were obtained from the prccession photographs; the $h k k$ data used in the refinement were obtained from the Weissenberg photographs, only those reflections for which $\sin \theta_{n k k}<0.790$ being included. The intensity estimates were made visually by comparison with a calibrated intensity strip. From the precession-camera data, relative $\left|F_{h k i}\right|^{2}$ were obtained by applying the Lorentz-polarization corrections as obtained from Waser (1951, 1952) and Grenville-Wells \& Abrahams (1952) charts supplied by Nies. \dagger Lorentz-polarization corrections were also applied to the Weissenberg data in the usual way. No corrections were made for absorption or extinction.

Refinement of the structure

It has been shown in the paper on $\mathrm{Pd}_{17} \mathrm{Se}_{15}$, that it is not possible to make a choice of the most probable of the three space groups to which the crystal might belong. The lowest standard errors were obtained in the centrosymmetric space group, but this in itself does not necessarily mean that it is the most probable one. In fact, as a result of the work on the $\mathrm{Pd}_{17} \mathrm{Se}_{15}$, the author is led to the speculation that if a structure truly belongs to a non-centrosymmetric space group but is only a very small perturbation on a centrosymmetric one, it is highly probable that it will converge more rapidly in the latter and have lower standard errors on the average. That is, the standard errors for like parameters will be about the same in the two groups, but those which arise from the additional degrees of freedom in the non-centrosymmetric group will have large standard errors associated with them (Geller, 1962). For $\mathrm{Kh}_{17} \mathrm{~S}_{15}$, refinement was based only on the centrosymmetric space group $P m 3 m$.

[^0]The total number of independent reflections within the precession camera range on the zeroth and first layer photographs about [100] and on the zeroth level Weissenberg photograph about [110] with $\sin \theta_{n k k}<0.790$ was 402 . Of these, 128 were too weak to be observed.

Refinement was carried out using the IBM 704 Busing-Levy (1959) least-squares program adapted to the IBM 7090 with a compatibility program. At first all reflection amplitudes of observed reflections were given unit weight while those of reflections too weak to be observed were weighted zero. The starting positional parameters were the analogous final parameters of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ except for the Rh atoms in $24 m$. These were taken as $x=0 \cdot 360$ and $z=0 \cdot 140$ as against 0.352 and $0 \cdot 150$ respectively for $\mathrm{Pd}_{17} \mathrm{Se}_{15}$. The change was based on examination of a number of the amplitudes. Starting values of isotropic temperature factors were $0 \cdot 10 \AA^{2}$ for all Rh atoms and $0 \cdot 25 \AA^{2}$ for all S atoms. In the calculation of structure amplitudes, the atomic scattering factors used for Rh were those of Thomas \& Umeda (1957) and for sulfur, those of Dawson (1960). The real part of the dispersion correction (Dauben \& Templeton, 1955) was applied to the Rh scattering factors.

Although after the first least-squares cycle there was little change in positional parameters, there was some difficulty with the temperature factors as was also found for $\mathrm{Pd}_{17} \mathrm{Se}_{15}$. In early iterations several of the amplitudes from reflections which suffered heavily from extinction were given zero weight and in subsequent iterations those for which $|A F| \geq 30$ were given zero weight; the changes in positional parameters were not significant. The temperature factors were more reasonable but several were still negative* in the last cycle. Examination of the correlation matrix (Geller, 1961) indicates that interactions between the temperature factors and positional parameters are all small and therefore that we may have some confidence in the interatomic distances calculated from the latter. The final parameters and standard deviations based on the use of 219 amplitudes with unit weight are given in Table l. Calculated and observed amplitudes with the positional parameters given in Table 1 but with values of $B, 0.05 \AA^{2}$ for all Rh and $0 \cdot 10 \AA^{2}$ for all S atoms are listed in Table 2. The discrepancy factor including considera-

[^1]Table 1. Final parameters and standard errors

Atom	Position	x	y	z	B	$\sigma(x)$	$\sigma(z)$	$\sigma(B)$
Rh	24 m	$0 \cdot 3564$	$0 \cdot 3564$	().1435	$0 \cdot 01$	$0 \cdot 0001$	$0 \cdot 0002$	$0 \cdot 02$
S	$12 j$	$0 \cdot 1696$	$0 \cdot 1696$	$\frac{1}{2}$	-0.01	0.0006		$0 \cdot 09$
s	$12 i$	$0 \cdot 2310$	0.2310	0	(0) 12	0.0008		$0 \cdot 11$
S	$6 f$	$\frac{1}{2}$	$\frac{1}{2}$	$0 \cdot 2643$	$0 \cdot 14$		0.0016	$0 \cdot 15$
Rh	6	0	0	$0 \cdot 2388$	-0.05		0.0005	$0 \cdot 07$
Rh	3d	0	0	$\underline{1}$	0.00			$0 \cdot 07$
12h	$1 b$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	-0.24			$0 \cdot 15$

Table 2. Observed and calculated amplitudes

tion of multiplicity but excluding the 600,800 and 440 amplitudes is $0 \cdot 12$. When the three amplitudes are included, the discrepancy factor is $0 \cdot 13$.

Description of the structure

The interatomic distances in $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ are listed in Table 3. For ease of comparison the analogous $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ distances are also listed. The general features of the $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ structure are shown in Fig. 2 of the paper on $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ (Geller, 1962). However, in detail, there are important differences in the $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ and $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ structures.
The $\operatorname{Rh}(b)-\mathrm{S}(f)$ are shorter than the $\mathrm{Rh}(d)-\mathrm{S}(j)$ distances (Table 3), even though the former are octahedral whereas the latter appear to be squarecoordination distances. This is reverse of the situation in $\mathrm{Pd}_{17} \mathrm{Se}_{15}$. On the other hand, $\mathrm{Rh}(d)$ also has two $\mathrm{Rh}(e)$ neighbors at $2.59 \AA$ which together with the $4 \mathrm{~S}(j)$ atoms completes an octahedron about $\mathrm{Rh}(d)$. In $\mathrm{Pd}_{17} \mathrm{Se}_{15}$, the analogous $\operatorname{Pd}(d)-\operatorname{Pd}(e)$ distance is
$2.78 \AA$, which is $0.03 \AA$ longer than the elementary $\mathrm{Pd}-\mathrm{Pd}$ distance, $2.75 \AA$. In elementary Rh which has the same cubic close-packed structure as elementary Pd , the nearest neighbor $\mathrm{Rh}-\mathrm{Rh}$ distance is $2 \cdot 69 \AA$. Thus the $\operatorname{Rh}(d)-\operatorname{Rh}(e)$ distance in $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ is $0.10 \AA$ shorter than the elementary Rh-Rh distance, indicating considerably stronger bonding than between the analogous $\operatorname{Pd}(d)-\operatorname{Pd}(e)$ neighbors. This would account for the longer $\operatorname{Rh}(d)-S(j)$ distances.
Further corroboration of the preceding argument is obtained from examination of the Rh-S distances involving $\mathrm{Rh}(e)$, which is surrounded by a square of $\mathrm{S}(i)$ atoms (though $\mathrm{Rh}(e)$ is $0.08 \AA$ out of the plane of the $\mathrm{S}(i)$ atoms) and one $\operatorname{Rh}(d)$ atom. The $\operatorname{Rh}(e)-\mathrm{S}(i)$ distance, $2 \cdot 29 \AA$, is shorter than that of $\operatorname{Rh}(b)-\mathrm{S}(f)$, but not in the same proportion as the analogous distances in $\mathrm{Pd}_{17} \mathrm{Se}_{\mathrm{l}_{5}}$. Again this is justified by the shorter $\operatorname{Rh}(e)-\operatorname{Rh}(d)$ distance.
The average $\operatorname{Rh}(m)-\mathrm{S}$ distance is $2 \cdot 33 \AA$, not significantly different from the $\operatorname{Rh}(b)-\mathrm{S}(f)$ distance. This appears to be somewhat anomalous, but again

Table 3. Interatomic distances and standard error in $\mathrm{Rh}_{17} \mathrm{~S}_{15}$

Atom	Neighbors	Distance	σ	Analogous $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ distance
$\mathrm{Rh}(b)$	$6 \mathrm{~S}(f)$	$2 \cdot 336 \AA$	$0 \cdot 016 \AA$	$2 \cdot 576 \AA$
$\mathrm{Rh}($ d $)$	$4 S(j)$	2.378	0.009	2-527
	$2 \mathrm{Kh}(e)$	$2 \cdot 588$	0.007	$2 \cdot 781$
$\mathrm{Rh}(\mathrm{e})$	$4 \mathrm{~S}(\mathrm{i})$	2.291	0.008	$2 \cdot 438$
	$1 \mathrm{Kh}(\mathrm{d})$	$2 \cdot 588$	$0 \cdot 007$	2.781
	$4 \mathrm{Rh}(e)$	$3 \cdot 348$	0.007	$3 \cdot 566$
$\mathrm{Rh}(m)$	$1 \mathrm{~S}(\mathrm{i})$	$2 \cdot 261$	0.010	$2 \cdot 430$
	$1 S(f)$	$2 \cdot 342$	$0 \cdot 010$	$2 \cdot 492$
	$2 S(j)$	$2 \cdot 349$	0.006	$2 \cdot 509$
	$1 \operatorname{Rh}_{(m)}$	$2 \cdot 844$	$0 \cdot 004$	$3 \cdot 184$
	$2 \mathrm{Rh}(m)$	$2 \cdot 846$	$0 \cdot 003$	$3 \cdot 137$
	$2 \mathrm{Rh}(m)$	$2 \cdot 984$	0.003	$3 \cdot 029$
$S(f)$	$4 S(f)$	$3 \cdot 304$	$0 \cdot 022$	$3 \cdot 643$
	$4 \mathrm{~S}(j)$	$3 \cdot 406$	$0 \cdot 012$	3.641
	$4 \mathrm{Rh}(\mathrm{m})$	$2 \cdot 342$	$0 \cdot 010$	$2 \cdot 492$
	$1 \mathrm{Rh}(b)$	$2 \cdot 336$	0.016	$2 \cdot 576$
$S(i)$	$4 \mathrm{~S}(\mathrm{i})$	$3 \cdot 238$	$0 \cdot 009$	$3 \cdot 445$
	$4 \mathrm{~S}(\mathrm{j})$	$3 \cdot 210$	$0 \cdot 007$	$3 \cdot 440$
	${ }_{2} \mathrm{R}$ R (e)	2.291	0.008	$\underline{9} 438$
	$2 \mathrm{Rh}(\mathrm{m})$	$2 \cdot 261$	0.010	$2 \cdot 430$
$\leqslant(j)$	$2 \mathrm{~S}(f)$	$3 \cdot 406$	0.012	$3 \cdot 641$
	$4 \mathrm{~S}(\mathrm{i})$	$3 \cdot 210$	0.007	$3 \cdot 440$
	${ }^{2} \mathrm{~S}(j)$	$3 \cdot 362$	0.013	3.572
	$1 \mathrm{Rh}(d)$	$2 \cdot 378$	$0 \cdot 009$	$2 \cdot 527$
	$4 \mathrm{Rh}(m)$	$2 \cdot 349$	$0 \cdot 006$	2.509

examination of the metal-metal distances indicates a possible reason. The three nearest $\mathrm{Rh}(m)-\mathrm{Rh}(m)$ distances, although $0 \cdot 16 \AA$ longer than the elementary distances, are relatively considerably shorter than the analogous $\mathrm{Pd}-\mathrm{Pd}$ distances; the nearest neighbor $\operatorname{Pd}(m)-\operatorname{Pd}(m)$ distances average $3 \cdot 15 \AA$ which is $0 \cdot 40 \AA$ longer than the elementary distance. Thus it appears that in $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ the $\mathrm{Rh}-\mathrm{Rh}$ bonds are in general stronger than the $\mathrm{Pd}-\mathrm{Pd}$ bonds in $\mathrm{Pd}_{17} \mathrm{Se}_{15}$.

References

Busing, W. R. \& Levy, H. (1959). ORNL Central Files Memorandum 59-4-37, April.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.
Dawson, B. (1960). Acta Cryst. 13, 403.
(AEller, S. (1954). J. Amer. Chem. Soc. 77, 2641.
Gelleir, S. (1961). Acta Cryst. 14, 1026.
Geller, S. (1962). Acta Cryst. 15, 713.
Grenville-Wells, H.J. \& Abrahams, S. ('. (1952). Rev. Sci. Instrum. 23, 328.
Juza, R., Hヒ̈lsman, O., Meisel, K. \& Biltz, W. (1935). Z. anorg. Chem. 225, 369.

Kjekshus, A. (1960). Acta Chem. Scand. 14, 1623.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

Waser, J. (1951). Rev. Sci. Instrum. 22, 567.
Waser, J. (1952). Rev. Sci. Instrum. 23, 430.

Neutron Diffraction Study of Ammonium Perchlorate

By H. G. Smith and H. A. Levy
Chemistry Division, Oak Ridge National Laboratory,* Oak Ridge, Tennessee, U.S.A.

(Received 30 October 1961)
A neutron diffraction study of single crystals of $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ at room temperature has indicated that the orientation of the ammonium ion in the crystal is random, and suggests that it is undergoing free or nearly free rotation.

Introduction

A room temperature single crystal study of ammonium perchlorate was undertaken in order to compare the structure of this compound with the 'isomorphous' compound hydronium perchlorate (also under investigation by the authors). A structure comprising an ordered, hydrogen-bonded arrangement of the ammonium ions had been suggested from X-ray

[^2]difference Fourier projections by Venkatesan (1957). This arrangement, however, is not consistent with the present neutron data which suggests that the ammonium ion is undergoing essentially free rotation. The recent infra-red (Waddington, 1958), nuclear magnetic resonance ($N M R$) (Ibers, 1960, and Richards \& Schaefer, 1961), heat capacity (.Justice \& Westrum, 1961) and cold neutron (Rush, Taylor \& Havens, 1961) studies strongly support these results. The $\mathrm{OH}_{3} \mathrm{ClO}_{4}$ neutron diffraction study in which the OH_{3}^{+}ion is disordered, but not rotating, will be reported at a later date.

[^0]: * In some of the photographs, some extra spots appeared which were obviously from an occluded crystallite.
 \dagger N. P. Nies, 969 Skyline Drive, Laguna Beach, California.

[^1]: * However, the standard errors (Table 1) indicate that none of these are significantly different from zero.

[^2]: * Operated for the U.S. Atomic Fnergy Commission by Union Carbide Corporation.

